MAX materials and MXene materials are new two-dimensional materials who have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in many fields. This is an in depth introduction to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements on the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the key group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is a new kind of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, consisting of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A means the main-group elements, and X refers to the aspects of C and/or N. The MXene material is actually a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials make sure they are have an array of applications in structural materials. For example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often found in energy materials. For instance, K4(MP4)(P4) is one of the MAX materials with high ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The top of MXene materials can connect with more functional atoms and molecules, along with a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually include the etching treatment of the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials really are a new kind of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are widely used in energy storage and conversion. As an example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials could also be used as catalysts in fuel cells to enhance the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be utilized in electromagnetic protection. As an example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. For example, MXene materials can be used gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. Additionally, MXene materials may also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with all the continuous progress of technology and science as well as the increasing demand for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will be further expanded and improved. The following aspects may become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques can be further explored to understand a far more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, however, there is still room for additional optimization. In the future, the composition, structure, surface treatment along with other facets of the material may be studied and improved comprehensive to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be commonly used in many fields, but you can still find many potential application areas to be explored. Down the road, they may be further expanded, such as in artificial intelligence, biomedicine, environmental protection as well as other fields.
To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in many fields. With the continuous progress of technology and science and also the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.